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Abstract. A two dimensional (2D) classical system of dipole particles confined by a quadratic potential is
studied. This system can be used as a model for rare electrons in semiconductor structures near a metal
electrode, indirect excitons in coupled quantum dots etc. For clusters of N ≤ 80 particles ground state
configurations and appropriate eigenfrequencies and eigenvectors for the normal modes are found. Monte-
Carlo and molecular dynamic methods are used to study the order-disorder transition (the “melting”
of clusters). In mesoscopic clusters (N < 37) there is a hierarchy of transitions: at lower temperatures
an intershell orientational disordering of pairs of shells takes place; at higher temperatures the intershell
diffusion sets in and the shell structure disappears. In “macroscopic” clusters (N > 37) an orientational
“melting” of only the outer shell is possible. The most stable clusters (having both maximal lowest nonzero
eigenfrequencies and maximal temperatures of total melting) are those of completed crystal shells which
are concentric groups of nodes of 2D hexagonal lattice with a number of nodes placed in the center of them.
The picture of disordering in clusters is compared with that in an infinite 2D dipole system. The study of
the radial diffusion constant, the structure factor, the local minima distribution and other quantities shows
that the melting temperature is a nonmonotonic function of the number of particles in the system. The
dynamical equilibrium between “solid-like” and “orientationally disordered” forms of clusters is considered.

PACS. 61.46.+w Clusters, nanoparticles, and nanocrystalline materials – 68.65.+g Low-dimensional
structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties
– 36.40.Ei Phase transitions in clusters

1 Introduction

The properties of a set of physical systems can, under
certain conditions, be studied with the help of the model
system of interacting dipoles. Particularly, it is a dipole-
dipole interaction that is of main importance when small
dielectric particles on the surface of an electrolyte [1] or
monolayers of adsorbed atoms [2] are considered.

Another class of systems in which the majority of in-
teresting properties is due to a dipole character of in-
teraction are electron systems in semiconductors of small
size located in the vicinity of a metal electrode. It is ob-
vious that if the dot of a large enough size is situated
near a single metal gate the electrostatic image forces will
play an important role [3,4] and the long-ranged electron-
electron Coulomb interaction potential will transform to
the short-ranged dipole-dipole one between “composite”
particles “electron + image charge”. Recent advances in
microlithography and one-electronics revived interest in
such semiconductor structures, interesting because of the
strong structural sensitivity to the number of particles
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[5,6]. One can suppose that such sensitivity makes possible
a modulation of different thermodynamic properties and
the temperatures of disordering in semiconductor struc-
tures through the addition of particles, and it also sug-
gests the existence of unusual structural rearrangements
with increasing temperature which, in turn, can lead to
very interesting phenomena, for both theory and exper-
iment, of coexistence between different types of ordered
structures.

The main purpose of the present paper is to study,
via detailed Monte-Carlo (MC) and molecular dynamic
(MD) calculations, the ground state properties, tempera-
tures and possible types of disordering phenomena of the
system of electrons in a 2D semiconductor dot near a metal
electrode, when the particles interact by a dipole law. We
analyze the ground state structure of systems consisting
of a finite number of dipoles (N ≤ 80) in a harmonic con-
finement and the picture of their melting with increasing
temperature. It turns out that on the basis of the char-
acter of disordering (“melting”) phenomena dipole clus-
ters can be divided into “mesoscopic” and “macroscopic”
groups. In “mesoscopic” clusters of small numbers of par-
ticles (N < 37) there are two stages of disordering: ori-
entational intershell disordering of different pairs of shells
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and, at greater temperatures, radial disordering when par-
ticles begin to interchange between shells. Increasing the
temperature of large particle number clusters (N > 37)
leads to radial disordering and to disruption of the shell
structure at a temperature which is a function of the dis-
tance from the center of the system.

An analysis of the behaviour of different thermody-
namic properties enables us to make a conclusion about
the strong dependence of both “orientational” melting
temperatures of mesoscopic and total disordering temper-
ature of macroscopic clusters on the distribution of par-
ticles over crystal shells of different symmetry which can
be associated with different parts of a perfect hexagonal
crystal lattice. It is shown that clusters with the maximal
number of completed crystal shells have anomalously high
disordering temperatures.

As an intermediate between mesoscopic and macro-
scopic systems the cluster of 37 particles is considered.
The most interesting feature of this cluster is the presence
of the temperature region of coexistence of “solid-like” and
orientationally disordered forms. This behavior of the sys-
tem with increasing temperature is much like the picture
of structural transitions in magic number atomic clusters
[7–9].

The paper is organized as follows. In Section 2 we de-
scribe the model and briefly outline the methods that
where used to find global minima configurations and to
calculate different thermodynamic properties. Section 3
is devoted to the description and discussion of ground
state configurations. In Section 4 we present the results
from MC and MD simulations at different temperatures
and system sizes. We consider two cases: “mesoscopic”
(N < 37, see Sect. 4.1) and “macroscopic” (N > 37, see
Sect. 4.2) clusters. Separately, as an intermediate case, in
Section 4.3 we study the cluster of N = 37 particles. Our
conclusions are presented in Section 5.

2 The model. Numerical simulation

We consider a semiconductor quantum dot situated within
a single metal electrode (experimental realization of such
systems is described, e.g., in Ref. [5]). Due to the presence
of electrostatic images of each electron, when the density
of electrons n is small (n� h−2, where h is the thickness
of the spacer between the dot and the metal gate), the
majority of system properties can be captured by a model
system of interacting dipoles in a confining potential. Note
that the concept of electrostatic image charges (i.e. elec-
trostatic approximation for the polarization) is applica-
ble at “large” h, when effects like the dynamical retarda-
tion of the polarization are negligible (see e.g. Ref. [10]).
The dipole momenta of such “composite” dipole particles
“electron + image charge” can be estimated as d = eh.

We consider the classical limit of the dipole clus-
ter, when the amplitude of the quantum fluctuations is
much smaller than the mean interparticle distance. The
Hamiltonian for such a system, in the case of parabolic

confinement with strength α, has the form

H =
∑
i<j

d2

|ri − rj |3
+ α

N∑
i=1

|ri|2.

The Hamiltonian can be written in a dimensionless form
if we express the coordinates and energy in the follow-
ing units: r0 = d2/5/α1/5, E0 = αr2

0. In such units the
Hamiltonian becomes

H =
∑
i<j

1
|ri − rj |3

+
N∑
i=1

|ri|2. (1)

From here on all the results will be given in the units
introduced above. When considering thermodynamic
properties of the system we will use the dimensionless tem-
perature T = kbT/E0.

In order to improve the reliability of results, all the
ground state configurations presented below (see Tab. 1)
were independently obtained with the help of two algo-
rithms: “classical simulated annealing” [11] and “com-
bined Monte-Carlo + gradient search” (see below). For
each N we considered as many as 200 random initial con-
figurations. This approach made it possible to study local
minima as well as appropriate regions of catchment (“rel-
ative weights” of local minima).

In view of intrinsic statistical nature of the CSA
method, the problem of localization of the system in lo-
cal minima is solved in this approach much more easily
than in different gradient methods. When using CSA, the
system is modelled at some artificially introduced tem-
perature T (t) which is gradually decreased with the time
t of experiment. This makes it possible to simulate the
thermal noise and delocalize the system from metastable
states. After starting from sufficiently high temperature
of T (t = 0) = 10, at each t we performed ∼ 200 MC
steps per particle, whereupon the temperature was be-
ing decreased as T (t + 1) = 0.98T (t). The trial move
x → x + δx at each MC step was generated in accor-
dance with Gaussian probability distribution Π(δx) ∼
exp (−δx2/T (t)). This move was accepted with the prob-
ability p = min{1, exp (−∆E/T (t))}. Several hundreds of
conjugate gradient steps were performed at the last stage
of the algorithm to gain in the accuracy of results.

It turned out that CSA is not as fast an algorithm
as the combined MC + gradient search method. A search
for minima within the last approach consists of repeated
(up to 104 combined moves) applying the following proce-
dures:

(1) classical random search when the trial move r→ r+δr
is accepted if it reduces the energy. The maximal size
of the trial move max{|δx|} was chosen automatically
to assure the acceptance probability of a new config-
uration of 0.1;

(2) gradient search method r→ r− γ∇H, γ ≈ 0.01;
(3) “Ravine” method [12]. In this method the direction l

of the most probable displacement of the system that
moves in a long narrow ravine is predicted on the basis
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Table 1. Ground state configurations of 2D dipole clusters DN in a harmonic confining. Shown are shell configurations
{N1, N2, ...}, types of crystal shells (see in text) and excess energy ε = E/N .

N {N1, N2, ...} ε N {N1, N2, ...} ε

1 1 0 41 3, 9, 14, 15 Cr3 8.93397

2 2 0.64660 42 3, 9, 14, 16 Cr3 9.08148

3 3 1.01394 43 3, 9, 15, 16 Cr3 9.22705

4 4 1.38021 44 3, 9, 15, 17 Cr3 9.37309

5 5 1.75713 45 4, 10, 15, 16 Cr4 9.51691

6 1, 5 2.04829 46 4, 10, 15, 17 Cr4 9.66006

7 1, 6 Cr1 2.32591 47 4, 10, 16, 17 Cr4 9.80303

8 1, 7 Cr1 2.63542 48 4, 10, 16, 18 Cr4 9.94353

9 2, 7 Cr2 2.92373 49 1, 5, 11, 16, 16 Cr1 10.08318

10 3, 7 Cr3 3.19012 50 1, 6, 11, 16, 16 Cr1 10.21803

11 3, 8 Cr3 3.41972 51 1, 6, 12, 16, 16 Cr1 10.35593

12 3, 9 Cr3 3.66665 52 1, 6, 11, 17, 17 Cr1 10.49035

13 4, 9 Cr4 3.89493 53 1, 6, 12, 17, 17 Cr1 10.62096

14 4, 10 Cr4 4.13543 54 1, 6, 12, 17, 18 Cr1 10.75525

15 5, 10 4.35999 55 1, 6, 12, 18, 18 Cr1 10.88617

16 1, 5, 10 4.56558 56 1, 6, 12, 18, 19 Cr1 11.02094

17 1, 6, 10 Cr1 4.77272 57 1, 6, 12, 18, 20 Cr1 11.15521

18 1, 6, 11 Cr1 4.97257 58 1, 6, 12, 18, 21 Cr1 11.28939

19 1, 6, 12 Cr1 5.18009 59 2, 8, 13, 18, 18 Cr2 11.41878

20 1, 7, 12 Cr1 5.38833 60 3, 8, 13, 18, 18 Cr3 11.54741

21 2, 7, 12 Cr2 5.59048 61 2, 8, 14, 18, 19 Cr2 11.67875

22 2, 8, 12 Cr2 5.77969 62 2, 8, 14, 19, 19 Cr2 11.80329

23 3, 8, 12 Cr3 5.96866 63 3, 8, 14, 19, 19 Cr3 11.92863

24 3, 8, 13 Cr3 6.14713 64 3, 9, 14, 19, 19 Cr3 12.05160

25 3, 9, 13 Cr3 6.32561 65 3, 9, 15, 19, 19 Cr3 12.17598

26 4, 9, 13 Cr4 6.50834 66 3, 9, 14, 20, 20 Cr3 12.30108

27 4, 9, 14 Cr4 6.68410 67 3, 9, 15, 20, 20 Cr3 12.42251

28 4, 10, 14 Cr4 6.85654 68 3, 9, 15, 20, 21 Cr3 12.54674

29 5, 10, 14 7.03598 69 4, 10, 15, 20, 20 Cr4 12.66865

30 5, 10, 15 7.20543 70 5, 10, 15, 20, 20 12.78866

31 1, 5, 10, 15 Cr1 7.36745 71 1, 5, 10, 15, 20, 21 12.90960

32 1, 6, 12, 13 Cr1 7.52917 72 4, 10, 16, 21, 21 Cr4 13.03147

33 1, 6, 12, 14 Cr1 7.68741 73 1, 5, 11, 16, 20, 20 13.15305

34 1, 6, 12, 15 Cr1 7.84408 74 1, 5, 11, 16, 21, 20 13.27021

35 1, 6, 12, 16 Cr1 8.00361 75 1, 5, 11, 16, 21, 21 13.38454

36 1, 6, 12, 17 Cr1 8.16885 76 1, 6, 11, 16, 21, 21 Cr1 13.50135

37 1, 6, 1̃, 13, 16 Cr1 8.33111 77 1, 6, 12, 18, 20, 20 Cr1 13.61939

38 2, 8, 13, 15 Cr2 8.48550 78 1, 6, 12, 17, 21, 21 Cr1 13.73279

39 3, 8, 13, 15 Cr3 8.63869 79 1, 6, 12, 18, 21, 21 Cr1 13.84553

40 3, 9, 14, 14 Cr3 8.78617 80 1, 6, 12, 17, 22, 22 Cr1 13.96137
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of a series {r1, r2, ... rm} of successive gradient search
steps: l = rm − r1. A number of trial moves in this
direction r→ 0.5(r1 + r2) + lδ completes the method.
The maximal size of these moves max{|δ|} was ad-
justed in such a way as to achieve the acceptance
probability of ∼ 0.1. We found that the throughput
of the combined method was maximal when moves of
above-mentioned types where performed in the ratio
of N1 : N2 : N3 = 100 : 10 : 2.

When studying the thermodynamic properties of
the system, we used the Metropolis Monte-Carlo algo-
rithm [13]. For the system of small number of particles
(N < 40) and at sufficiently low temperatures (T < 0.02),
when shells are well defined, we found it very efficient to
perform collective MC moves of different shells. With the
multigrid approach [14] for shell s of Ns particles one can
apply the following types of collective moves with wave
vector ks:

(1) angular perturbations such that angles ϕis of particles
which belong to shell s vary as

ϕis → ϕis + ξδϕ(k; s) cos (2πkis/Ns) (2)

with ξ being the random variable uniform in [−1, 1);
(2) radial perturbations of shell s:

ris → ris + ξδr(k; s) cos (2πkis/Ns). (3)

Parameters δϕ and δr are adjusted in such a way as to
assure a given acceptance probability of a new configura-
tion.

It is obvious that the case ks = 0 corresponds to the
symmetrical “breathing” of shell s when the radial pertur-
bation (3) is considered and to the rotation of the shell as
a whole when one performs the global move (2). We found
that such rotation of different shells was very important
when studying the phenomena of intershell orientational
disordering which take place in mesoscopic systems at low
temperatures (the temperatures of orientational “melt-
ing” can be many orders less than that of full disordering
and shells’ destruction). The approach described above en-
abled us to increase the efficiency of calculations by about
five times.

To study dynamical characteristics of the system we
applied molecular dynamic simulations (both isokinetical
and microcanonical methods where used). The main por-
tion of the results presented below were obtained with
the help of the fourth-order Runge-Kutta scheme. Equa-
tions of motion were integrated in ∼ 104 MD steps of size
τ ≤ 0.01τ0, where τ0 =

√
m∗/α determines the time scale

in the system.

3 Ground state configurations

Previous studies of Coulomb [15–18] and logarithmic
[19–21] clusters have shown that it is suitable to classify
ground state configurations of these finite systems in ac-
cordance with their shell structure. Differences between

structures of two-dimensional dipole (D) and Coulomb
clusters can be seen even at N = 10 (the system D10 has
the structure D10(3, 7) as distinct from (2, 8) for Coulomb
system [22]). The number of differences grows rapidly with
increasing number of particles. To explore tendencies in
the process of cluster shells developing, let us consider
the shell configurations of 2D dipole clusters that are pre-
sented in Table 1 (see also Fig. 1). The results of calcula-
tions show that particles fill in shells which are not con-
centric to the perimeter of the cluster, the basis for most
configurations is provided by different parts of 2D hexag-
onal lattice. This observation is not specific to clusters
with short-ranged pair interactions only. As was argued
by Koulakov and Shklovskii [6], only a narrow ring ad-
jacent to the perimeter of sufficiently large 2D Coulomb
clusters is concentric to it, the rest of the cluster is filled
with an almost perfect crystal.

When describing and analyzing the properties of such
configurations we found it suitable to introduce into con-
sideration the “crystal shells” Crc that are concentric
groups of nodes of ideal 2D crystal with c nodes placed
in the center of these groups (see Fig. 2). Obviously, in
view of the axial symmetry of the confinement poten-
tial, we can concentrate on a finite number of the most
symmetrical crystal shells. By the number of particles
in the center of the system, the crystal shells can be
divided into the following groups: Cr1, Cr2, Cr3, Cr4.
Figure 2 explains our definition. The number of particles
Ns that belong to crystal shell s (crystal row) of type Crc
is Ns = c+ 6(s− 1)− δc1(1− δs1) (δij is the Kronecker’s
symbol).

With the help of the crystal shell concept an analysis
of the results presented in Table 1 shows that as the num-
ber of particles in the cluster increases, the configuration
of the system changes in accordance with the following
tendencies:

1. the maximum number of crystal shells is filled;
2. the number of particles on the last two shells tends to

be equal.

To illustrate these tendencies we underline the shells
which are filled up (see Fig. 1 and Tab. 1 where the types
of basic crystal shells are also shown).

An addition of particles to the cluster leads to the com-
pleting of crystal shells of some type, followed by the struc-
ture rearrangement (Figs. 1c–1d) after which crystal shells
of different type begin to fill. From Table 1 one can see that
in some cases it is more advantageous to depart from the
order Cr1 → Cr2 → Cr3 → Cr4 in which different types
of crystal shells appear. Examples of such deviations (e.g.
D56−D61 and D71−D73) show that it can be profitable to
reduce the number of particles on first shells (in the center
of the system) and equalize them on the last ones. This
observation underlines the importance of the requirement
that the last two shells of the cluster have equal numbers
of particles.

It is to be noted that for some systems the choice of
the basis crystal group is ambiguous. The most spectacu-
lar examples of this ambiguity are clusters that we assign
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Fig. 1. Ground state configurations of some dipole clusters: (a) D44; (b) D47; (c) D58; (d) D59. Squares denotes particles with
5 nearest neighbors.

Fig. 2. Different parts of a 2D hexagonal lattice produce the basis for ground state configurations of the majority of dipole
clusters (see Tab. 1). Shown are examples of such basic groups of crystal shells. The four most symmetrical groups of three
shells each is presented.



256 The European Physical Journal D

Fig. 3. Minimal nonzero eigenfrequencies ωmin for the normal modes of N-particle dipole clusters.

to Cr2 crystal group (such clusters are D38, D59, D61, D62,
see Tab. 1). Of course, one can consider these systems as
having a number of partially completed crystal shells of
Cr4 type (the “body” of a cluster) while the other par-
ticles locate on the surface of this “body”. In breaking
a cluster into shells we have been guided by the require-
ment that the outer shell of the cluster be well-defined
and closed. For the system with a more short-ranged in-
teraction potential (e.g. with the exponential or screened
Coulomb interaction potential) it can be more natural to
consider the evolution of the cluster with N as consisting
of switching between three types of the most symmetrical
basic crystal shells, namely Cr1, Cr3, Cr4 [6]. Seemingly,
the question of what approach is more adequate can be
answered by the data of the thermodynamic and dynamic
analysis.

Of a peculiar interest are the “magic” dipole clus-
ters with the maximal number of completely filled crystal
shells and, in the case of clusters of a large number of par-
ticles (N > 40), with equal number of particles on the last
two shells. An analysis of Table 1 suggests that these clus-
ters areD12, D14, D19, D36, D40, D51, D54, D55, D62, D65...
The spectral analysis of the ground state configura-
tions [16] shows that there is a correlation between the
value of the minimal nonzero eigenfrequency ωmin and the
extent to which crystal shells are completed (see Fig. 3),
the clusters with the maximal number of completed crys-
tal shells (and equal number of particles on the last two
shells) have, as a rule, maximal values of ωmin. To illus-
trate this statement we have calculated the correlation
coefficient between the minimal nonzero eigenfrequency
ωmin(N) and the degree to which a given cluster can be
thought of as a “magic” one, m(N) = (“the number of filled
crystal shells” + 1 if the number of particles in the last
two shells are equal) / (“the number of cluster shells”).
We found that corr(ωmin,m) ≈ 0.22 > 0 in the region
N ∈ [10, 80], which is indicative of the correlation sup-
posed.

At the end of this section let us discuss the arrange-
ment of particles into shells in the cluster D37 (see Fig. 4).

One can see that one of the particles is between the second
and the third shell to form an interstitial (it is analogous
to the Frenkel defect in crystals). Such classification of this
particle is based on the Voronoi analysis which shows that
the central particle has six neighbours. The corresponding
configuration can be denoted by D37(1, 6, 1̃, 13, 16) where
the tilde stands for the interstitial.

It is pertinent to note that the presence of interstitials
is common with 3D Coulomb clusters as the number of
particles becomes of the order of several hundreds [18]. As
have been observed, it is typically the case that, due to
the presence of such interstitial charges caught between
concentric shells, the inner shells of large 3D systems are
less well defined than the outer ones.

There exist also other opportunities to describe
the structure of the cluster D37, for example as
D37(1, 6, 12, 2̃, 16). Our choice (see also Tab. 1 and Fig. 4a)
has also proved itself in the results of the analysis of
the lowest local minima configuration that has well-
defined shell structure: D(1)

37 (1, 7, 13, 16) This configura-
tion is shown in Figure 4a. It will be shown below that
the ground state configuration peculiarities of the cluster
involved lead to rather a complex picture of disordering
phenomena with increasing temperature.

4 Phase transitions

4.1 Mesoscopic clusters (N < 37)

The distinctive property of mesoscopic clusters is the pres-
ence of two types of disordering effects in these systems:
[15,21,22] an intershell orientational disordering (an orien-
tational melting of shells s1 and s2 at temperature Ts1s2)
and a radial disordering (a total melting at temperature
Tm that is larger than any one of the orientational melting
temperatures). An analysis of eigenfrequencies and eigen-
vectors for the normal modes of small clusters shows that
the motions with small lowest nonzero eigenfrequencies
ωmin correspond to intershell rotation. Such clusters will
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Fig. 4. Cluster D37. (a) The ground state configuration D37(1, 6, 1̃, 13, 16). (b) The eigenvector of the cluster motion in the
global minimum with the minimal nonzero eigenfrequency ωmin ≈ 0.58. (c) The picture of the motion in the lowest local

minimum D
(1)
37 (1, 7, 13, 16) with a minimal eigenfrequency ω

(1)
min ≈ 0.4. Five-coordinated particles are marked by squares.

have small temperatures Ts1s2 of intershell disordering, at
which shells start to rotate relative to each other losing
their mutual orientational order. Note that, in contrast to
the case of large clusters, an intershell melting in small
clusters takes place for all pairs of shells, i.e. there ex-
ist “melting” temperatures T21, T32, T43... In clusters of
large numbers of particles (N > 37) an orientational dis-
ordering of only the outer shell is possible. An analogous
observation was made for Coulomb clusters [16].

The usual way of studying the intershell orientational
disordering in 2D repulsive clusters is an analysis of rel-
ative angle deviations of shells (in analogy with pair de-
viations (6), see below) [15,16,21,22]. In this approach
the temperature Ts1s2 of orientational “melting” of clus-
ter shells s1 and s2 is defined as that at which there is a
sharp increase in the value of appropriate relative angle
deviations. We define the temperature Ts1s2 of orienta-
tional “melting” of shells s1 and s2 as that at which the
mutual orientational (order) parameter of shells s1 and
s2 vanishes [23]. We introduce this quantity as follows: for
each shell s of Ns particles we consider the complex-valued
quantity ψs:

ψs =
1
Ns

∑
is

exp (Nsϕis). (4)

The sum in (4) is extended over all particles from shell
s. The mutual orientational (order) parameter is then de-
fined as

gs1s2 = 〈ψs1ψ∗s2〉. (5)

It is obvious, that gs1s2 disappears at the point of relative
disordering (slipping) of shells s1 and s2, gss = 〈|ψs|2〉 can
be considered as a measure of the intrashell order.

The orientational order parameter ψs discussed above
is a special case of the more general orientational bond-
order parameter Q6(r) widely used for 3D clusters and

bulk systems [9,24]. In this connection it is worth while to
note, that both Q6(r) and ψs are natural generalizations
of two-dimensional hexatic parameter ψ6(r) [25]. The mu-
tual orientational (order) parameter gs1s2 is analogous to
the correlation function g6(r) of an infinite 2D system,
where vanishing (when the translational order is absent)
of the correlation function, g6(r)→ 0 as r →∞, indicates
the relative orientational disordering of distant parts of a
system.

Shown in Figure 5 are dependencies of the values of
mutual orientational parameters g21 and g32 vs. tempera-
ture for three-shell cluster D24. Also plotted are pair and
radial deviations δpair(T ) and u2

r (T )

δpair =
2

N(N − 1)

∑
i<j

[〈
|ri − rj |2

〉
〈|ri − rj |〉2

− 1

]1/2

(6)

δr =
1
N

N∑
i

[〈
|ri|2

〉
〈|ri|〉2

− 1

]1/2

,

u2
r =

1
N

N∑
i

[〈
|ri|2

〉
− 〈|ri|〉2

]
. (7)

The figure shows that for cluster D24 one can define two
temperatures T32 = (5±0.5)×10−4 and T21 = (3±0.05)×
10−4 which correspond to orientational melting of shells
{3, 2} and {2, 1}.

Figure 5 (see also Fig. 6) shows that pair and radial
deviations (6, 7) are also sensitive to intershell rotation.
One can see the regions of sharp increases in the values of
these quantities that coincide with the regions of vanishing
of mutual orientational order. The sensitivity of radial and
pair deviations to the orientational disordering is due to
the “breathing” of the cluster shells on their rotation. This
breathing can be clearly seen if one traces the motion of
a system along a “reaction path” [26], the most probable
trajectory which is appropriate to the intershell rotation.
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Fig. 5. Three-shell cluster D24(3, 8, 13). The results of calculations of the mutual orientational parameter (5) and of deviations
(6, 7) as functions of temperature T are presented. The data are connected to guide the eyes. If not present, error bars are
smaller than the size of the data point.

Fig. 6. Four-shell cluster D35(1, 6, 12, 16). Mutual orientational parameter Re|g32| and relative deviations δpair(T ) vs. temper-
ature T .

Temperature T32 ≈ 0.05 ± 0.003 of the orienta-
tional “melting” of the third shell of four-shell cluster
D35(1, 6, 12, 16) is only slightly lower than the tempera-
ture Tm = 0.065 ± 0.005 of the total melting at which
the radial order disappears (see Fig. 6). It is obvious that
the temperature of an orientational intershell disordering
will to a large extent depend on the distribution of par-
ticles throughout shells. Particularly, as a pair {s1, s2} of
completed crystal shells is considered (see Sect. 3), ap-
propriate temperature Ts1s2 of an orientational “melting”
should be maximal (irrespective of whether these shells
are inside the cluster or a pair of external shells is consid-
ered). Calculations do show that the addition of as little as
one particle to small cluster D19(1, 6, 12) with completely

filled crystal shells of Cr1 type leads to abrupt decreas-
ing of temperature T32 of orientational “melting”. Indeed,
temperature T32 ≈ 0.03 ± 0.002 of D19 cluster is very
nearly equal to that of the total melting Tm ≈ 0.038±0.003
(at which particles begin to interchange between shells).
SystemD20(1, 7, 12) becomes orientationally disordered at
much smaller temperatures T32 < 5× 10−6.

To conclude this section, we would like to sketch the
differences between the results presented here and that of
previous examinations of 3D Coulomb clusters in a sym-
metrical harmonic trap. The study of potential energy
surfaces, spectra and barriers for rearrangements of dif-
ferent types has shown [17,18] that the rearrangements
of 3D clusters can be classified as intershell or intrashell,
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Fig. 7. Temperature dependence of excess energy ε(T ) for a number of dipole clusters DN . Shown on an enlarged scale is the
excess energy of D37 cluster in the temperature region T ∈ [0.005, 0.02] (to be compared with the results of work [22]).

where intrashell processes involve permutations of atoms
belonging to the same shell of the cluster (i.e. the surface
diffusion over concentric shells may take place). In con-
trast, 2D repulsive clusters do not reveal any intrashell
disordering phenomena. Instead, all the rearrangements
are intershell ones and involve both migration of particles
between different shells of a cluster and mutual orienta-
tional disordering (slipping) of different pairs of internally
ordered shells.

4.2 Macroscopic clusters (N > 37)

The most interesting when considering macroscopic clus-
ters (atN > 37) is the question about the manner in which
their melting temperatures Tm approach the temperature
[27,28] T inf

m = kbTm/(d2n3/2) = 0.089± 0.002 of first or-
der phase transition in 2D infinite dipole system (here n
stands for the density of particles in the system [29]).

One of the most representative quantities for 2D infi-
nite dipole system is excess energy ε that exhibits a jump
of∆ε ≈ 0.04 at a temperature of phase transition T inf

m [27].
Our calculations show (see Fig. 7) that such a sharp in-
crease in an excess energy does not take place at least for
clusters with N < 50. We think this peculiarity is primar-
ily connected with the incommensurability of the circular
shape of the trap with the lattice and the inhomogeneity
of the particle density. Later we will discuss this question
in some more detail.

Yet another quantity that is commonly used in analyz-
ing phase transitions in infinite systems is the structure
factor S(k) = 1/N〈ρkρ−k〉, ρk =

∑
i exp (kri). The lat-

tice to liquid transition is identified through the vanishing
of the first Bragg peak S(k), k ≈ q1. We found that the
magnitude of this peak (the maximum of the structure
factor in the region |k| > kc ∼ π) is acutely sensitive to
the disordering in clusters. The peak at small wave vectors
|k| < π that exists at any temperature due to finite size

of the system involved is of no interest. Some character-
istic examples of the behavior of the structure factor as a
function of temperature are given in Figure 8.

An independent quantity, a sharp change in which tes-
tifies about the order/disorder transition, is the radial dif-
fusion constantDr. Figure 9 presents the results of calcula-
tions of this quantity, performed for clusters D39, D40 and
D45. Each data point in this figure was obtained by aver-
aging over results of 5 independent experiments in which
the evolution of the system was observed in a time that
is typical for the diffusion of a particle for a distance of
∆r ∼ 1. The result one of such experiment is shown in the
inset of the figure.

From the analysis of temperature dependencies of
the structure factor, relative deviations, and diffusion
constant one can plot the total melting temperature
Tm(N), N ≤ 52 as a function of the number of particles
in the cluster. This curve is shown in the inset of Figure 9.
The figure enables us to point out some characteristic fea-
tures of the N dependence of the disordering temperature.
(i) Melting of all clusters studied takes place at temper-
atures much smaller than temperature T inf

m ≈ 0.1 of the
phase transition in an infinite system. (ii) The function
Tm(N) is nonmonotonic. An analysis of the data presented
in Table 1 shows that the clusters with a maximal number
of completed crystal shells have anomalously high melting
temperatures (at least for N < 52). Most likely, this pecu-
liarity is primarily connected with the fact that a cluster
of N particles can be considered as a part of a strongly dis-
torted crystal lattice. Hence one studies the melting of a
part of the imperfect crystal with “frozen-in” interstitials
and dislocations (see Fig. 1a), the melting temperature
being a function of the number of such defects (of the
value of an initial deformation of a cluster as a part of the
crystal). Obviously, the number of defects in the ground
state configuration will be minimal in the case of a cluster
with a maximal number of filled crystal shells.
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Fig. 8. The magnitude of the first Bragg peak as a function of T for clusters D40 and D45. Shown also is 2D topography of
the structure factor S(k), S(k) < 0.5 at different temperatures. “Solid-like” to “liquid-like” transition is accomplished by the
washing out of S(k) in regions k ≈ q1 of reciprocal lattice vectors.

Fig. 9. The radial diffusion constant vs. temperature T . The inset shows a typical diffusive motion of particles when the cluster
is in a disordered state (T ≥ Tm). Results of the linear fit are also given.

Of course, the melting temperature is not a strictly de-
fined quantity for finite systems. It makes sense to consider
an interval ∆T (N) of temperatures in which the disorder-
ing takes place. For clusters of large numbers of particles
that repel each other and are in a confinement potential
there is another, more important, reason that does not en-
able us to introduce the concrete temperature of a phase
transition (of the total disordering in a system). The point
is that large dipole clusters (at N > 50) are strongly ir-
regular in both the density of particles and the density of
defects. These densities can vary appreciably with the dis-
tance r to the center of the system to lead to r-dependence
of the melting temperature.

Let us consider this question in some more detail. Re-
sults of numerical simulations show that large repulsive

clusters in a confinement can be viewed as consisting of
the following regions [6]: (a) the crystal “core”, the region
(belonging to a circle of some radius rc(N)) adjacent to
the center of the cluster and filled with a number of com-
pleted crystal shells; (b) the outer region (r > rc(N)) in
which dislocations and disclinations are situated. In order
to account for the r-dependence of the local density of
particles n = n(r) when considering the temperatures of
disordering of different parts of the cluster let us introduce
the scaled to 2D infinite system temperature T inf(r) as

T inf(r) = Tn(r)−3/2. (8)

Our calculations have shown that the scaled temper-
ature of disordering of the “core” (of the region (a),
see above) is independent of r and is slightly below the
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Fig. 10. The total melting temperatures Tm(N) and scaled [29] from “cluster” to “infinite system” temperatures T inf
f (N) as

functions of number of particles N . Points correspond to the results of present simulations. The dotted line depicts a possible
behavior of T inf

f (N) at N > 50. Temperature of first-order phase transition in an infinite 2D dipole system T inf
m is shown with

the help of a dashed line. Temperature T inf
m (r < rc(N)) (8) of the disordering of a core is assumed to tend to T inf

m as N increases.

temperature of the phase transition in an infinite 2D sys-
tem. For example, considering the region r < 2.5 of D80

cluster we have found T inf
m (r < 2.5) = 0.07 ± 0.01. One

can suppose that as N increases, the scaled temperature
of core disordering T inf

m (r < rc(N)) approaches the tem-
perature of phase transition in a 2D infinite dipole system:
T inf

m (r < rc(N))→ T inf
m .

It is worth while to note that, being measured in the
central region of the cluster D80, the excess energy does
have a small jump of δε(r < 2.5) ≈ 0.01. Similar analysis
was performed for a 2D logarithmic cluster of 500 par-
ticles in a harmonic confinement (all measurements were
performed in the central part of the cluster) [30]. A reduc-
tion in the value of the excess energy jump with respect to
that in a 2D infinite system was ascribed to the “boundary
effects”, the influence of the rest of the cluster.

Obviously, the temperature of disordering in the outer
region (in the region (b)) strongly depends on the num-
ber of disclinations and dislocations in them and will
be smaller of the disordering temperature of a core:
T inf

m (r > rc) < T inf
m (r < rc). As for D80 cluster, the

melting of their outer part was found to take place at
T inf(r > rc) = 0.01± 0.005.

Thus we argue that:

(i) defined as a point of drastic changes in pair and radial
deviations, diffusion constant, and of disappearance
of the first Bragg peak, neither “melting” tempera-
ture Tm(N) nor scaled to 2D infinite system (8) melt-
ing temperature T inf

m (N) tends to first-order phase
transition temperature in an infinite 2D system as
the number of particles in the cluster increases;

(ii) function Tm(N) is not monotonic. The clusters with
the maximal number of completed crystal shells and
the minimal number of defects have maximal melting
temperatures;

(iii) one can introduce the temperature T inf
m (r <

rc(N))→ T inf
m , N →∞ which is the (scaled to 2D

infinite system) melting temperature of a core, the
free of defects central region r < rc(N) of a cluster.

These qualitative predictions are presented in Fig-
ure 10.

4.3 Cluster D37

System D37 can be considered as an intermediate one be-
tween mesoscopic and macroscopic clusters. An analysis
of the global minimum configuration (see Fig. 4) and of
the structure of normal motions with the minimal eigen-
frequency ωmin leads to the seemingly unambiguous con-
clusion about the absence of the intershell orientational
disordering. However, our calculation shows that the melt-
ing in this system is not a one-step process. Instead,
the orientational melting takes place at the temperature
T = T ∗ ≈ 0.01 that is approximately three times lower
than that of total melting Tm ≈ 0.035 ± 0.002. The ori-
entational disordering of all pairs of shells takes place at
temperature T ∗.

The reason for this “anomalous” behavior of cluster
D37 can be elucidated by considering the structure of the
lowest local minima configurations (i.e. the configurations
with the lowest energy). We have noted above (see Fig. 4c)
that global and local minima configurations differ in a
symmetry, namely, any breaking of the ground state con-
figuration down into shells leads to the necessity of viewing
one or two particles (see Sect. 3) as interstitials interposed
between shells of the cluster. Only two first shells are
well-defined: D37(1, 6, ...). On the contrary, the configu-
ration of the first excited state (of the lowest local min-
ima with energy ε

(1)
loc ≈ 8.3325) is rather symmetrical
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Fig. 11. The probability that the central particle of cluster D37 has six neighbours as a function of temperature T . In the inset
local minima distributions for different temperatures are shown. One can see that at T > 0.01 a group of local minima with
energies near ε(1), the energy of the lowest local minimum, are being occupied.

and has the clear shell structure: D(1)
37 (1, 7, 13, 16). As

shells of the cluster in this local minimum are not faceted,
it is not surprising that the motion (in this local minimum)
with the lowest eigenfrequency ω(1)

min ≈ 0.4 corresponds to
the intershell rotation. This is illustrated in Figure 4c.

Plotted in Figure 11 is the probability d6 of the cen-
tral particle having six neighbours. This figure shows that
at temperatures T > T ∗ = 0.01 ± 0.002 there is a fi-
nite probability to find a system in the vicinity of the
local minimum D

(1)
37 (1, 7, ...). Yet another illustration of

this rearrangement is the change in histogram ρ(εloc) of
the local minima distribution [9] shown in the inset of Fig-
ure 11. One can see that at T = T ∗ a spike at energy ε(1)

loc
appears. Further increasing the temperature leads to the
occupancy of other local minima and, at T > 0.3, the ra-
dial disordering takes place, particles interchange between
shells and the radial distribution function is washed out.
So, at T > T ∗, a part of the time the system lives in the
neighbourhood of the “symmetrical” local minimum that
is unstable against intershell rotation at such high temper-
atures. This intershell disordering also manifests itself as
a sharp increase in relative angular intershell deviations
at this temperature T = 0.01.

From results of studies of atomic clusters [7–9] it is
known that clusters of some specific number of particles
(so-called “magic” Lennard-Jones (LJ) clusters such as
LJ13, LJ19, see e.g. works [9] and references therein) have
distinct regions of coexistence of “liquid-like” and “solid-
like” forms when in a certain temperature interval there is
nonzero probability to find the cluster either in a “liquid-
like” or in a “solid-like” form. It was shown that this un-
usual property owes its origin to features of the multi-
dimensional potential energy surface and stems from an
existence of regions (well-separated by high barriers) in
phase space with distinct physical properties and appre-
ciable residence time for the system in each region.

A picture of disordering in cluster D37 with increas-
ing temperature closely resembles the picture of structural
transitions in magic number atomic clusters. Of course, at
sufficiently high temperatures, at T > T ∗ = 0.01, the sys-
tem can be found in one of two distinct regions in phase
space with a barrier between them. This equilibrium can
be described as:

D37(1, 6, 1̃, 13, 16)
K
 D37(1, 7, 13, 16),

K =
[D37(1, 7, 13, 16)][
D37(1, 6, 1̃, 13, 16)

] = e−∆F (T )/T

where ∆F (T ) is free energy difference of “symmetrical”
and “fully ordered” states of the cluster. At T < 0.01,
constant of equilibrium K ∼ 1 − d6 is equal to zero and
increases markedly as the temperature is increased (see
Fig. 11).

Previous investigations of magic number atomic clus-
ters have shown that two distinct phases can be said to
coexist if a suitable order parameter Q can be found such
that the probability distribution p(Q) of the order pa-
rameter in the canonical ensemble has two maxima [9].
Figure 12 shows the variation of the Landau free energy
F (Q) = F (T )− T ln(p(Q)) as a function of the order pa-
rameter Q = Ψ6 at a number of temperatures. In order
to calculate the probability distribution p(Q) we applied
the method of the canonical distribution function sam-
pling [9]. As the order parameter two-dimensional bond-
orientation order parameter averaged over internal region
r < 2.4 of the cluster has been used:

Ψ6 =

〈∣∣∣∣∣ 1
N(r < 2.5)

∑
i

1
Ni

Ni∑
p

exp (6ϕp)

∣∣∣∣∣
2〉

. (9)

The first sum in this equation is over N(r < 2.5) par-
ticles from the region r < 2.4 (belonging to three inner
shells), the sum on p is overNi neighbours of the particle i,
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Fig. 12. Variation of the Landau free energy for D37 vs. 2D bond-orientation order parameter Ψ6 at different temperatures
T . As the Helmholtz free energy F (T ) is independent of Ψ6, the zero of the Landau free energy at each temperature has been
chosen so as to better represent the results.

and ϕp is the angle between the bond 〈i, p〉 and an arbi-
trary axis. The values of Ψ6 lie between 0 and 1, where
the latter case corresponds to a part of a perfect crystal.

Arrows in the figure indicate the values of the order pa-
rameter Ψ6 corresponding to the ground state (Ψ6 ≈ 0.63)
and to the lowest local minimum (Ψ6 ≈ 0.13). One can
see that at T = 0.018 and T = 0.022 the Landau free
energy has two minima, the “ordered” well (with higher
value of Ψ6) is preferable at T = 0.018. The dashed curves
correspond to temperatures at which only one well was
observed. We have found that the temperature region
over which the cluster D37 shows double minima in the
Landau free energy, and hence there are both stable and
metastable states, can be estimated as 0.012 < T < 0.025.

The above analysis suggests that, with the cluster D37

being radial ordered up to Tm = 0.035, the temperature
region 0.012 < T < 0.025 can not be considered as the
region of coexistence of its “solid-like” and “liquid-like”
forms. Instead, this temperature interval can be thought
of as the region of coexistence of “solid-like” and “orien-
tationally disordered” forms. It is the presence of such a
region that enables us to consider the system D37 as an
intermediate one that has features of both mesoscopic and
macroscopic clusters.

To conclude of this paragraph we note that the num-
ber of D37-like “anomalous” systems can be varied by
tuning the characteristic range of an interaction poten-
tial. Increasing the temperature in such systems can lead
to structure rearrangements (with changes in symmetry),
changes in the shell distribution or in types of defects.
Consequently, the above consideration can be helpful in
the study of thermodynamic properties of the clusters, pa-
rameters of interparticle potential of which can be varied
in wide limits, e.g. of the system of electrons in a semi-

conductor dot near metal electrodes [5,6], dusty plasma
clusters [31,32] etc.

5 Conclusion

We have presented the results of a numerical simulation
of a finite 2D dipole system in parabolic confinement.
Ground state configurations and the spectrum of normal
modes of clusters of N ≤ 80 particles have been found. An
addition of particles to the system leads to a gradual filling
of crystal shells of different symmetry. The clusters with
minimal energies and maximal lowest eigenfrequencies are
those with the maximal number of completely filled crys-
tal shells and (in the case of large clusters, N > 40) with
equal numbers of particles on the last two shells.

The character of disordering with increasing the tem-
perature is markedly different for mesoscopic (N <
37) and macroscopic (N > 37) clusters. Particularly,
mesoscopic clusters are characterized by an existence of
two types of disordering effects: orientational and full (ra-
dial). Depending on the degree to which crystal shells are
completed the temperatures of orientational “melting” of
different pairs of shells can differ greatly from each other.
Orientational melting in large systems is absent.

An analysis of the local minima distribution of the
system D37 as a function of temperature has shown that
this system has features of both mesoscopic and macro-
scopic clusters. Namely, there is a region of temperatures
in which the cluster is in a dynamical equilibrium between
“solid-like” and radial ordered but orientationally disor-
dered forms.

The system of a large number of particles is nonuni-
form: both the characteristic interparticle distance and
the local density of defects are functions of a distance
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r from the center of the system. As a consequence, the
temperature at which a sharp increase in radial and pair
deviations starts, vanishing of the first Bragg peak takes
place, and the diffusion of particles appear does not ap-
proach temperature T inf

m of a first-order phase transition
in a 2D infinite dipole system as the number of parti-
cles is increased. The “melting” temperature Tm(N) is a
nonmonotonic function of the number of particles N and
is maximal for the clusters with the maximal number of
completed crystal shells.
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